

LA-UR-19-28544

Approved for public release; distribution is unlimited.

Title: Boron effect on active measurements with the Dynamic Albedo of

Neutrons on board the Mars Curiosity Rover

Author(s): Festal, Sophie

Nowicki, Suzanne Florence

Czarnecki, Sean Gasda, Patrick J. Hardgrove, Craig

Intended for: Report

Issued: 2019-08-23

EST.1943

Boron effect on active measurements with the Dynamic Albedo of Neutrons on board the Mars Curiosity Rover

https://www.nasa.gov/sites/default/files/images/551041main_pia14156-full_full.jpg

Sophie Festal¹, Suzanne Nowicki¹, Sean Czarnecki², Patrick Gasda², Craig Hardgrove³

1: ISR-1: Space Science and Applications, 2: ISR-2: Space and Remote Sensing, 3: Arizona State University

New Mexico

Ghost Ranch²

Santa Fe Museum of art3

Valles Caldera⁴

Abiquiu lake⁵

5: https://bunnyterry.com/cool-off-abiquiu-lake-new-mexico/

^{1:} http://ontheworldmap.com/usa/state/new-mexico/ 4: https://www.nps.gov/vall/index.htm

^{2:} https://anncavittfisher.com/2017/05/12/ghost-ranch/ 3: https://santafe.com/article/all-things-real-estate-the-new-mexico-museum-of-art

Outline

- Introduction
- The DAN instrument
- Objectives
- Hydrogen detection & simulations
- Results & analyses
- Conclusion Future work
- Annexes

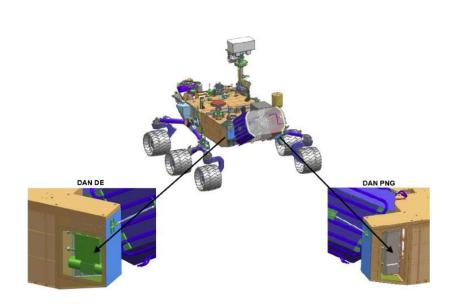
Introduction

- MSL mission:
 - Probing Martian soil, analyze its composition
 - Understand the past of Mars:
 - · Life?
 - How much water was there 3.5 billion years ago?
- 2002: Odyssey Spacecraft detects a signal for water
- 2012 (August 6th): Mars Curiosity Rover landed in Gale Crater
- 2013: hydrogen presence confirmed by ChemCam
- An ancient lake formed Gale crater → volcanic rocks reacted with water → water trapped in rocks today

https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/

Introduction

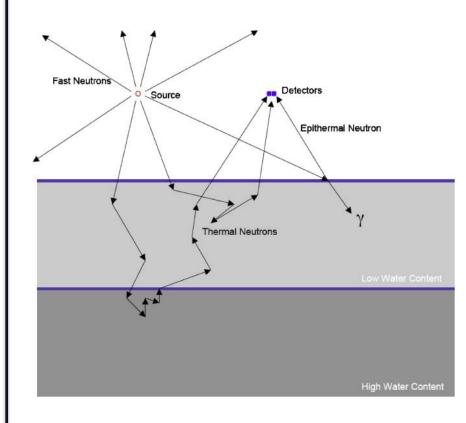
- To measure the water contained in those rocks, water content is proportional to hydrogen content
- Water content unit: wt% WEH (water equivalent hydrogen)
 - In a water molecule (H₂O), hydrogen has a certain relative mass:


$$100wt\% WEH = \frac{2 \times H}{(2 \times H + O)} \approx 0.11u$$

- So 1wt% WEH (=0.0011u) is the hydrogen mass that corresponds to 1% of the total hydrogen mass in a water molecule.
- In Martian soils in Gale Crater, average WEH = 2-4 wt%

https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl/

The Dynamic Albedo of Neutrons (DAN) instrument



2 He-3 tubes:

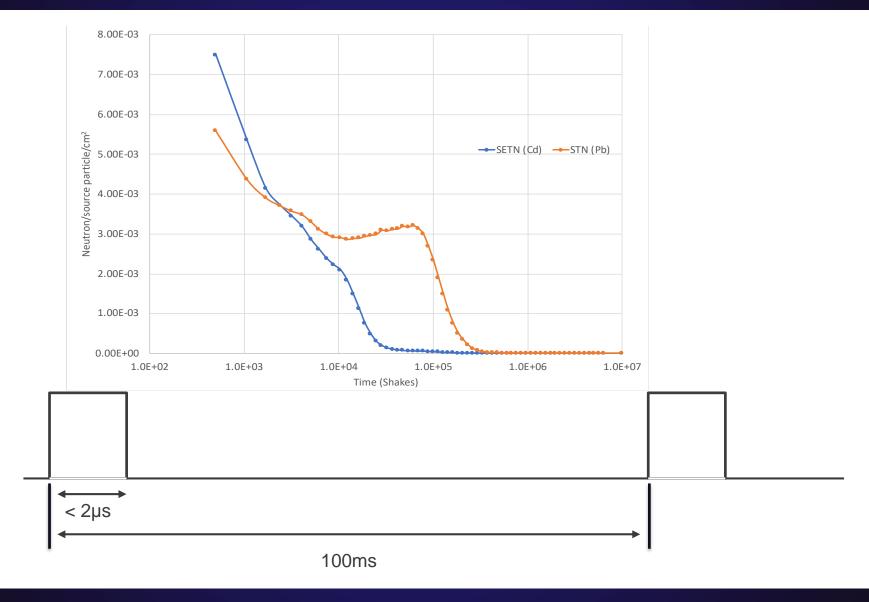
- Bare: thermal + epithermal
- Covered in Cd: epithermal
- Difference is a measure of thermal neutrons
- ${}^{3}\text{He} + n \rightarrow {}^{1}\text{H} + {}^{3}\text{H} + 0.764 \text{MeV}$

- Pulsed neutron generator
- 14.1MeV neutrons
- 10⁷ neutrons/pulse
- 10 pulses/s

How does DAN works?

Objectives

The primary objective of the DAN instrument is to quantify the amount of H in the soil of Mars.


Because H is a light element, it is a really good moderator for neutrons. By measuring thermal neutrons, one can quantify H. However, other elements, such as B, have a high cross section for thermal neutron capture, and can affect the thermal neutron flux.

Recently, ChemCam has detected between 100 and 500ppm B in veins, in the Murray formation and Yellowknife Bay (Gasda et al., 2017). We would like to understand how the concentration of B affect the thermal neutrons detected with DAN, and quantify the uncertainty of the DAN measurement in the presence of B.

Tasks

- –Modify MCNP6 input files, implement the right soil composition
 - The soil compositions come from ChemCam data (sebina)
 - Hydrogen: 0 → 6 wt% WEH
 - Boron: 0 → 300ppm
- -Run multiple files using computer cluster (mpi)
- –Analyze the results:
 - take the difference between bare and Cd-wrapped det to calculate thermal neutron count rate,
 - integrate,
 - calculate the uncertainties over time,
 - make 3D plot for a typical DAN measurements.
 - Analysis tool: ROOT

Time Structure of the DAN Instrument

Results & analyses – The neutron die-way technique

Analyzing the data: the neutron die-away technique.

- Fast neutrons interacting with Martian soils will be thermalized in different ways depending on the target's elemental composition.
- If the hydrogen content increases, thermal neutron arrival times shift to earlier times.
- Binning by time interval the thermal neutron counts allows to see these differences in arrival time and curve shapes.

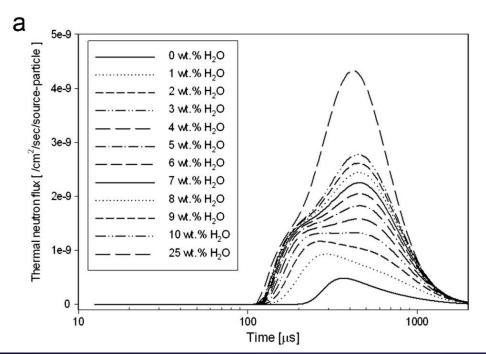
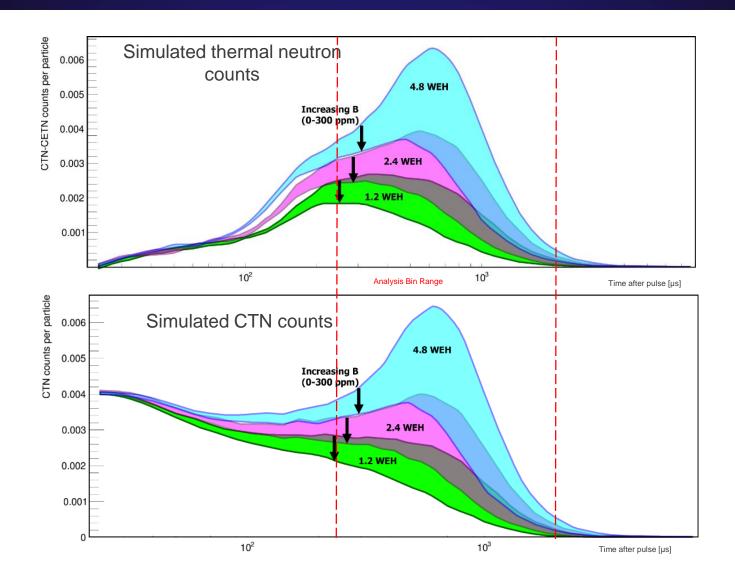
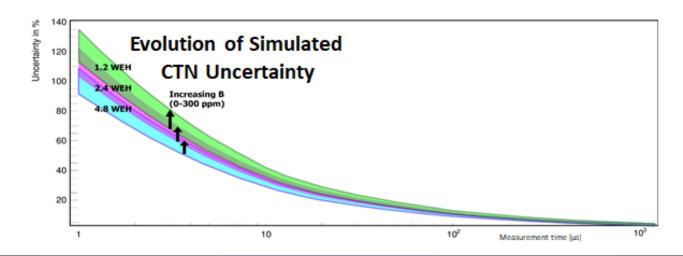
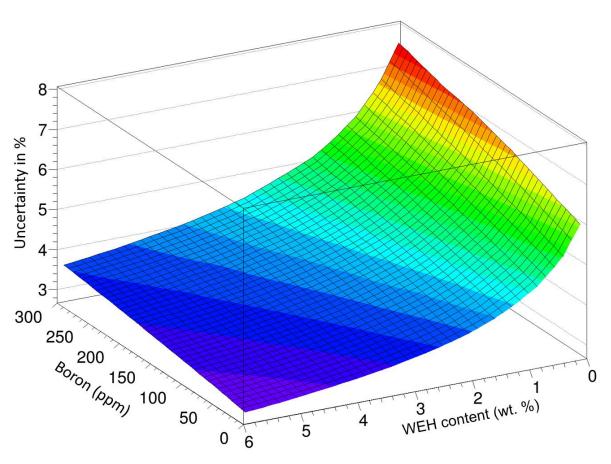



Fig. Example of neutron flux at the ³He neutron detector versus time of arrival ("dieaway" curve) for thermal neutrons.

(C. Hardgrove et al., 2011)


Results & analyses – Some results

Uncertainties


- The uncertainties are calculated by:
 - Summing the number of counts per pulse
 - Multiplying by the number of pulses per second
 - Integrating the number of counts per second N over time
 - $-\sqrt{N}/N$ is the uncertainty for N counts

Uncertainties – 3D plot

Uncertainties after a 20min measurement

- 3D plot using ROOT by CERN
- When B amount increases, uncertainties increase
- When H content decreases, uncertainties increase

Conclusion - Future Work

- The bulk water content is measured by detecting thermal neutrons thermalized by hydrogen and analyzing their die-away curves.
- Other elements present in Mars's subsurface, such as boron, absorb thermal neutrons and have an effect on the measurements, therefore on their uncertainties.
- Low hydrogen content + high boron amount increase the uncertainties but stay below 7.5% for 0wt% WEH and 300ppm boron.
- Future work:
 - Same analysis with high absorbers such as chlorine and iron
 - Different geometries: model of veins

Thank you!

Annexes

Annexes – Input files

 The soil composition in the MCNP6 input files for 2.4wt% WEH and 0ppm B

434-	m7010				
435-	24050	-0.000088904	461-	16033	-0.000273393
436-	17035	-0.008030560	462-	26058	-0.000401004
437-	26057	-0.003013218	463-	22047	-0.000489114
438-	20048	-0.000094996	464-	24054	-0.000048390
439-	35079	-0.000052557	465-	20040	-0.049246003
440-	16036	-0.000003649	466-	30067.80c	-0.000032788
441-	28058	-0.000694956	467-	24052	-0.001714517
442-	26054	-0.008311590	468-	11023	-0.014866321
443-	26056	-0.130474188	469-	19041	-0.000462297
444-	14030	-0.006652305	470-	17037	-0.002569440
445-	20046	-0.000032303	471-	1001	-0.002666667
446-	28062	-0.000037105	472-	25055	-0.001235312
447-	19040	-0.000037103	473-	30068.80c	-0.000149716
447-	19039	-0.006405939	474-	30064.80c	-0.000399004
449-	22048	-0.004846451	475-	16032	-0.034625540
450-	22050	-0.000340545	476-	14029	-0.010079575
450- 451-	30066.80c		477-	28064	-0.000009451
		-0.000225023	478-	28061	-0.000011634
452-	12025	-0.002555551	479-	22046	-0.000542369
453-	15031	-0.002653936	480-	12026	-0.002813661
454-	20044	-0.001059686	481-	8016	-0.434612773
455-	35081	-0.000051122	482-	12024	-0.020186315
456-	14028	-0.198413842	483-	20042	-0.000328671
457-	22049	-0.000355658	484-	28060	-0.000267690
458-	13027	-0.045786593	485-	20043	-0.000068577
459-	30070.80c	-0.000004955	486-	16034	-0.001549199
460-	24053	-0.000194408	487-	nlib=70c	

Annexes – ROOT program – Multigraph.C 1/2

```
gR00T->ProcessLine(".L Read.C");
gROOT->ProcessLine(".L makegraph_probabilities.C");
qR00T->ProcessLine(".L makegraph uncertainties.C");
// gR00T->ProcessLine(".L file name.C");
//TString file1, file2, file3, file4, file5, file6, file7;
Int t nb files=18: //nb of input files
TString file, file_buffer;
TString q name;
Int t i=0;
 Int t count1=3: //nb of groups (0.0H, 0.4H,...)
 Int t count2=6; //nb of lines in a group
 TString file1="1.2H 0.901BNACS 14.22Fe 1.06Cl homog.o";
 TString file2="1.2H 0.947BNACS 14.22Fe 1.06Cl 60B homog.o";
 TString file3="1.2H_0.993BNACS_14.22Fe_1.06Cl_120B_homog.o";
 TString file4="1.2H 1.039BNACS 14.22Fe 1.06Cl 180B homog.o";
 TString file5="1.2H 1.085BNACS 14.22Fe 1.06Cl 240B homog.o";
 TString file6="1.2H 1.131BNACS 14.22Fe 1.06Cl 300B homog.o";
 TString file7="2.4H 0.901BNACS 14.22Fe 1.06Cl homog.o";
 TString file8="2.4H 0.947BNACS 14.22Fe 1.06Cl 60B homog.o";
 TString file9="2.4H 0.993BNACS 14.22Fe 1.06Cl 120B homog.o";
 TString file10="2.4H 1.039BNACS 14.22Fe 1.06Cl 180B homog.o";
 TString file11="2.4H 1.085BNACS 14.22Fe 1.06Cl 240B homog.o";
 TString file12="2.4H 1.131BNACS 14.22Fe 1.06Cl 300B homog.o";
 TString file13="4.8H 0.9BNACS 14.22Fe 1.06Cl homog.o";
 TString file14="4.8H 0.946BNACS 14.22Fe 1.06Cl 60B homog.o":
 TString file15="4.8H 0.992BNACS 14.22Fe 1.06Cl 120B homog.o";
 TString file16="4.8H 1.038BNACS 14.22Fe 1.06Cl 180B homog.o";
 TString file17="4.8H 1.084BNACS 14.22Fe 1.06Cl 240B homog.o";
 TString file18="4.8H 1.13BNACS 14.22Fe 1.06Cl 300B homog.o";
 TCanvas *cv = new TCanvas("cv", "cv", 2400, 1200); TMultiGraph *mq = new TMultiGraph();
 auto legend = new TLegend(0.7,0.3,0.9,0.9);
```

```
std::vector<TString> array files;
 array files.push back(file1);
array files.push back(file2);
array files.push back(file3);
array files.push back(file4);
array_files.push_back(file5);
array files.push back(file6);
array files.push back(file7);
array files.push back(file8);
array files.push back(file9);
array files.push back(file10);
array files.push back(file11);
array files.push back(file12);
array files.push back(file13);
array files.push back(file14);
array files.push back(file15);
array files.push back(file16);
array files.push back(file17);
array files.push back(file18);
for (Int t j=0; j<count1; j++)
    for (Int t k=0; k<count2; k++)
      file buffer=array files[i];
       Double t **array14; array14=Read(file buffer, 14);
       Double t **array24; array24=Read(file buffer,24);
       TGraph *g; g=makegraph_probabilities(file_buffer,array14,array24);
       mg->Add(g);
```

Annexes – ROOT program – Multigraph.C 2/2

```
if (j==0)
           g->SetLineStyle(9); g->SetLineWidth(2); g_u->SetLineStyle(9); g_u->SetLineWidth(2); g_name="1.2wt% WEH - ";
         if (k==0) { q->SetLineColor(kAzure+1); q->SetMarkerColor(kAzure+1);
                                                                                  q name += "Oppm B"; }
         if (k==1){ g->SetLineColor(kAzure+2); g->SetMarkerColor(kAzure+2);
                                                                                  q name += "60ppm B"; }
         if (k==2){ g->SetLineColor(kBlue);
                                                  g->SetMarkerColor(kBlue);
                                                                                       g name += "120ppm B"; }
         if (k==3){ g->SetLineColor(kBlue+1);
                                                  g->SetMarkerColor(kBlue+1);
                                                                                     q name += "180ppm B"; }
         if (k==4){ g->SetLineColor(kBlue+2);
                                                  g->SetMarkerColor(kBlue+2);
                                                                                         g name += "240ppm B"; }
         if (k==5){ g->SetLineColor(kBlue+3);
                                                  g->SetMarkerColor(kBlue+3);
                                                                                         q name += "300ppm B"; }
        if (j==1)
         {
         g->SetLineStyle(1); g->SetLineWidth(2); g_u->SetLineStyle(1); g_u->SetLineWidth(2); g_name="2.4wt% WEH - ";
         if (k==0){ g->SetLineColor(kViolet-4); g->SetMarkerColor(kViolet-4);
                                                                                    g_name += "Oppm B"; }
         if (k==1){ g->SetLineColor(kViolet-2): g->SetMarkerColor(kViolet-2):
                                                                                     g name += "60ppm B"; }
         if (k==2){ g->SetLineColor(kViolet);
                                                                                          g_name += "120ppm B"; }
                                                   g->SetMarkerColor(kViolet);
         if (k==3){ g->SetLineColor(kMagenta);
                                                                                      q name += "180ppm B"; }
                                                  g->SetMarkerColor(kMagenta);
         if (k==4){ g->SetLineColor(kMagenta+1);
                                                     g->SetMarkerColor(kMagenta+1);
                                                                                              g name += "240ppm B"; }
         if (k==5){ g->SetLineColor(kMagenta+2);
                                                                                             g_name += "300ppm B"; }
                                                     g->SetMarkerColor(kMagenta+2);
        if (j==2)
           q->SetLineStyle(9); q->SetLineWidth(2); q u->SetLineStyle(9); q u->SetLineWidth(2); q name="4.8wt% WEH - ";
           if (k==0){ q->SetLineColor(kSpring+5); q->SetMarkerColor(kSpring+5);
                                                                                    g_name += "0ppm B"; }
         if (k==1){ g->SetLineColor(kSpring-5); g->SetMarkerColor(kSpring-5);
                                                                                    g name += "60ppm B"; }
         if (k==2){ g->SetLineColor(kSpring-1);
                                                     g->SetMarkerColor(kSpring-1);
                                                                                           g_name += "120ppm B"; }
         if (k==3){ g->SetLineColor(kSpring-6);
                                                   g->SetMarkerColor(kSpring-6);
                                                                                       g_name += "180ppm B"; }
         if (k==4){ g->SetLineColor(kGreen+2);
                                                   g->SetMarkerColor(kGreen+2);
                                                                                          g name += "240ppm B"; }
                                                                                     q name += "300ppm B"; }
         if (k==5){ g->SetLineColor(kGreen+3);
                                                   g->SetMarkerColor(kGreen+3);
        g->SetTitle(g name); g->SetName(g name); legend->AddEntry(g,g name,"lp");
       i=i+1;
  }
  gPad->SetLogx();
  mg->SetTitle("Evolution of the thermal neutrons counts; time(us); CTN-CETN counts per particle");
  mg->Draw("APC");
 legend->Draw();
 return;
```

Annexes – ROOT program – Plotting counts

```
// function that will make 2 TGraphs for 1 file: one for the thermal neutron probabibilities and another one for uncertain
ies
 TGraph* makegraph probabilities (TString file, Double t **array14, Double t **array24){
   Int t nb lines;
   Int t count=42; // nb of lines in the arrays
   Int t count2=26; //nb of lines for uncertainties (1s, 10s, 50s, 100s, 150s, 200s, ..., 1150s, 1200s) and 1200s = 20min,
⊆our integration time
 //creating a 1 dimension array for the difference of counts between tallies 24 and 14
 Double t *time; time = new Double t[count];
 Double t *array diff; array diff = new Double t[count];
 Float t *err; err = new Float t[count];
 for (Int_t i=0; i<count; i++)
      time[i]=array24[0][i];
                                                                            // change tallies
      array diff[i]=array24[1][i]-array14[1][i];
     err[i]=TMath::Sqrt(array24[2][i]*array24[2][i] + array14[2][i]*array14[2][i]);
      void array[i]=0;
   }
 TGraph* q = new TGraph (count, time, array diff);
 // TGraphErrors* q = new TGraphErrors (count, time, array diff, void array, err);
  q->SetTitle("CTN-CETN curve - 50ppm boron - 1wt% WEH; time(shakes); counts per 14MeV neutron"); // change boron amount
 g->SetMarkerStyle(7);
   return g;
```

Annexes – ROOT program – Plotting uncertainties 1/2

```
// function that will make a TGraphs (a graph of uncertainties) for 1 file: one for the thermal neutron probabibilities and anot
sher one for uncertainties
TGraph* makegraph uncertainties (TString file, Double t **array14, Double t **array24){
  Int_t nb_lines;
  Int t count=42; // nb of lines in the arrays
  Int t count2=26; //nb of lines for uncertainties (1s, 10s, 50s, 100s, 150s, 200s, ..., 1150s, 1200s) and 1200s = 20min, our in
¶ntegration time
 //creating a 1 dimension array for the difference of counts between tallies 24 and 14
 Double t *time; time = new Double t[count];
 Double t *array_diff; array_diff = new Double_t[count];
 Double t sum probabilities=0:
 for (Int t i=0; i<count; i++)
     time[i]=array24[0][i];
                                                                         // change tallies
     array diff[i]=array24[1][i]-array14[1][i];
     }
  // creating a 1 dimension array for the uncertainties of thermal neutron probabilitites
  Float t *time2; time2 = new Float t[count2];
  Double t *counts; counts = new Double t[count2];
  Float t *uncertainties percent; uncertainties percent = new Float t[count2];
  Double t sum counts=0:
  sum counts = sum probabilities * 10; // Sum counts is the number of neutrons per sec. The PNG rate is 1e7 neutrons per pulse,
🗣 10 pulses per second, so 1e8 neutrons per second. In the input files, on the sdef card is put a weight card: wgt=5e6, which cor🗣
Gresponds to the number of neutrons per pulse when the degeration is taken into account. To have the number of neutrons per second
ad I only need to multiply the sum of the probability by 10, the number of pulses.
  // cout << "le nombre de neutrons par sec est: " << sum counts << endl;
  Int t j=50;
  time2[0]=1; counts[0]=sum counts; uncertainties percent[0]=((TMath::Sgrt(counts[0]))/ counts[0])*100;
  time2[1]=10; counts[1]=counts[0]*time2[1]; uncertainties percent[1]=((TMath::Sqrt(counts[1]))/ counts[1])*100;
  cout << time2[0] << " " << uncertainties percent[0] << " " << counts[0] << endl;</pre>
  cout << time2[1] << " " << uncertainties_percent[1] << " " << counts[1] << endl;</pre>
```

Annexes – ROOT program – Plotting uncertainties 2/2

```
for (Int_t k=2; k<count2; k++)
    {
        time2[k]=j;
        counts[k]=counts[0]*time2[k];
        uncertainties_percent[k] =TMath::Sqrt(counts[k]);
        uncertainties_percent[k] = (uncertainties_percent[k])/counts[k];
        uncertainties_percent[k] = uncertainties_percent[k]*100;
        j=j+50;

        // cout << time2[k] << " " << uncertainties_percent[k] << " " << counts[k] << endl;
}

//Plotting the uncertainties related to thermal neutron probabilities as a function of time
TGraph* g2 = new TGraph (count2, time2, uncertainties_percent);

g2->SetTitle("Sqrt(N)/N for CTN-CETN curve - 50ppm boron - 1wt% WEH; time(s); Uncertainty in %"); // change boron amount
g2->SetMarkerStyle(7);
return g2;
}
```

Annexes – ROOT program – Uncertainties in 3D 1/2

```
graph 3D avec tous les fichiers
  gR00T->ProcessLine(".L Read.C");
  qR00T->ProcessLine(".L uncertainties 3D.C");
 // gR00T->ProcessLine(".L file name.C")
Int t nb files=256;
                     //nb of input files
 TString file, file buffer;
 Int t i=0;
  Int t count1=16: //nb of groups (0.0H, 0.4H...)
  Int t count2=16; //nb of files per group
 //0.0H, 16 files
TString file1="0.0H 0.902BNACS 14.22Fe 1.06Cl homog.mx.o";
TString file2="0.0H_0.917BNACS_14.22Fe_1.06Cl_20B_homog.mx.o";
TString file3="0.0H 0.932BNACS 14.22Fe 1.06Cl 40B homog.mx.o";
TString file4="0.0H 0.948BNACS 14.22Fe 1.06Cl 60B homog.mx.o";
TString file5="0.0H 0.963BNACS 14.22Fe 1.06Cl 80B homog.mx.o";
TString file6="0.0H_0.978BNACS_14.22Fe_1.06Cl_100B_homog.mx.o";
TString file7="0.0H 0.994BNACS 14.22Fe 1.06Cl 120B homog.mx.o";
TString file8="0.0H 1.009BNACS 14.22Fe 1.06Cl 140B homog.mx.o";
TString file9="0.0H 1.024BNACS 14.22Fe 1.06Cl 160B homog.mx.o";
TString file10="0.0H 1.04BNACS 14.22Fe 1.06Cl 180B homog.mx.o";
TString file11="0.0H 1.055BNACS 14.22Fe 1.06Cl 200B homog.mx.o";
TString file12="0.0H 1.07BNACS 14.22Fe 1.06Cl 220B homog.mx.o";
TString file13="0.0H_1.086BNACS_14.22Fe_1.06Cl_240B_homog.mx.o";
TString file14="0.0H 1.101BNACS 14.22Fe 1.06Cl 260B homog.mx.o";
TString file15="o.0H_1.116BNACS_14.22Fe_1.06Cl_280B_homog.mx.o";
TString file16="0.0H 1.132BNACS 14.22Fe 1.06Cl 300B homog.mx.o";
```

```
std::vector<TString> array files;
array files.push back(file1);
array files.push back(file2);
array files.push back(file3);
array files.push back(file4);
array files.push back(file5);
array files.push back(file6);
array files.push back(file7);
array files.push back(file8);
array files.push back(file9);
array files.push back(file10);
array files.push back(file11);
array files.push back(file12);
array files.push back(file13);
array files.push back(file14);
array_files.push_back(file15);
array files.push back(file16);
```

Annexes – ROOT program – Uncertainties in 3D 2/2

```
TCanvas *cv = new TCanvas("cv", "Graph 2D example", 0,0,1000,900);
                                                                     TGraph2D *q = new TGraph2D();
Double t B,H;
Float t u;
Double_t boron_amount=0;
Float t h amount=0.0;
//q->SetTitle("Uncertainties after a 20min measurement; boron (ppm); wt% WEH; uncertainty after 20min in %");
g->SetTitle("Uncertainties after a 20min measurement");
  for (Int t j=0; j<count1; j++){</pre>
   boron_amount=0; //reinitialise boron amount between each file group
    for (Int t k=0; k<count2; k++){
      file buffer=array files[i];
      Double_t **array14; array14=Read(file_buffer,14);
      Double t **array24; array24=Read(file buffer,24);
      B=boron amount;
      H=h_amount;
      u=uncertainties 20min(file buffer,array14,array24);
      g->SetPoint(i,B,H,u);
      boron amount=boron amount+20;
      i=i+1:
   h_amount= h_amount+0.4;
gStyle->SetPalette(1);
q->Draw("surf1");
return ;
```

Hydrogen detection & simulations

 The most abundant chemical elements present in the Martian soils that have an influence on hydrogen detection: boron, chlorine, iron, titanium.

Element	Thermal neutron absorption cross section	
Boron	767 barns	
Chlorine	33.5 barns	
Iron	2.56 barns	
Titanium	6.09 barns	

Titanium is in the rover's wheels, taken into account in the simulations